13 research outputs found

    Multistable jittering in oscillators with pulsatile delayed feedback

    Get PDF
    Oscillatory systems with time-delayed pulsatile feedback appear in various applied and theoretical research areas, and received a growing interest in the last years. For such systems, we report a remarkable scenario of destabilization of a periodic regular spiking regime. In the bifurcation point numerous regimes with non-equal interspike intervals emerge simultaneously. We show that this bifurcation is triggered by the steepness of the oscillator's phase resetting curve and that the number of the emerging, so-called "jittering" regimes grows exponentially with the delay value. Although this appears as highly degenerate from a dynamical systems viewpoint, the "multi-jitter" bifurcation occurs robustly in a large class of systems. We observe it not only in a paradigmatic phase-reduced model, but also in a simulated Hodgkin-Huxley neuron model and in an experiment with an electronic circuit

    Emergence and combinatorial accumulation of jittering regimes in spiking oscillators with delayed feedback

    Get PDF
    Interaction via pulses is common in many natural systems, especially neuronal. In this article we study one of the simplest possible systems with pulse interaction: a phase oscillator with delayed pulsatile feedback. When the oscillator reaches a specific state, it emits a pulse, which returns after propagating through a delay line. The impact of an incoming pulse is described by the oscillator's phase reset curve (PRC). In such a system we discover an unexpected phenomenon: for a sufficiently steep slope of the PRC, a periodic regular spiking solution bifurcates with several multipliers crossing the unit circle at the same parameter value. The number of such critical multipliers increases linearly with the delay and thus may be arbitrary large. This bifurcation is accompanied by the emergence of numerous "jittering" regimes with non-equal interspike intervals (ISIs). Each of these regimes corresponds to a periodic solution of the system with a period roughly proportional to the delay. The number of different "jittering" solutions emerging at the bifurcation point increases exponentially with the delay. We describe the combinatorial mechanism that underlies the emergence of such a variety of solutions. In particular, we show how a periodic solution exhibiting several distinct ISIs can imply the existence of multiple other solutions obtained by rearranging of these ISIs. We show that the theoretical results for phase oscillators accurately predict the behavior of an experimentally implemented electronic oscillator with pulsatile feedback

    Cloning of Chimera States in a Large Short-term Coupled Multiplex Network of Relaxation Oscillators

    Get PDF
    A new phenomenon of the chimera states cloning in a large two-layer multiplex network with short-term couplings has been discovered and studied. For certain values of strength and time of multiplex interaction, in the initially disordered layer, a state of chimera is formed with the same characteristics (the same average frequency and amplitude distributions in coherent and incoherent parts, as well as an identical phase distribution in coherent part), as in the chimera which was set in the other layer. The mechanism of the chimera states cloning is examined. It is shown that the cloning is not related with synchronization, but arises from the competition of oscillations in pairs of oscillators from different layers

    Mode hopping in oscillating systems with stochastic delays

    Get PDF
    We study a noisy oscillator with pulse delayed feedback, theoretically and in an electronic experimental implementation. Without noise, this system has multiple stable periodic regimes. We consider two types of noise: (i) phase noise acting on the oscillator state variable and (ii) stochastic fluctuations of the coupling delay. For both types of stochastic perturbations the system hops between the deterministic regimes, but it shows dramatically different scaling properties for different types of noise. The robustness to conventional phase noise increases with coupling strength. However for stochastic variations in the coupling delay, the lifetimes decrease exponentially with the coupling strength. We provide an analytic explanation for these scaling properties in a linearized model. Our findings thus indicate that the robustness of a system to stochastic perturbations strongly depends on the nature of these perturbations

    Embedding the dynamics of a single delay system into a feed-forward ring

    Get PDF
    We investigate the relation between the dynamics of a single oscillator with delayed self-feedback and a feed-forward ring of such oscillators, where each unit is coupled to its next neighbor in the same way as in the self-feedback case. We show that periodic solutions of the delayed oscillator give rise to families of rotating waves with different wave numbers in the corresponding ring. In particular, if for the single oscillator the periodic solution is resonant to the delay, it can be embedded into a ring with instantaneous couplings. We discover several cases where the stability of a periodic solution for the single unit can be related to the stability of the corresponding rotating wave in the ring. As a specific example we demonstrate how the complex bifurcation scenario of simultaneously emerging multi-jittering solutions can be transferred from a single oscillator with delayed pulse feedback to multi-jittering rotating waves in a sufficiently large ring of oscillators with instantaneous pulse coupling. Finally, we present an experimental realization of this dynamical phenomenon in a system of coupled electronic circuits of FitzHugh-Nagumo type

    Mode Hopping in Oscillating Systems with Stochastic Delays

    No full text
    We study a noisy oscillator with pulse delayed feedback, theoretically and in an electronic experimental implementation. Without noise, this system has multiple stable periodic regimes. We consider two types of noise: (i) phase noise acting on the oscillator state variable and (ii) stochastic fluctuations of the coupling delay. For both types of stochastic perturbations the system hops between the deterministic regimes, but it shows dramatically different scaling properties for different types of noise. The robustness to conventional phase noise increases with coupling strength. However for stochastic variations in the coupling delay, the lifetimes decrease exponentially with the coupling strength. We provide an analytic explanation for these scaling properties in a linearized model. Our findings thus indicate that the robustness of a system to stochastic perturbations strongly depends on the nature of these perturbations

    The mean complexities in the regimes of dynamical networks with full oscillations binding

    No full text
    We continue to apply the notion of mean complexities to study dynamical networks. We show that the mean complexities can help to single out the nodes with similar features (and dynamical behavior) and to reveal some properties of the topology of the networks. We found that the nodes with the same degree (number of connections) have equal values of the mean complexities in the regime of full binding. At the same time, the mean complexities of nodes with different degree follow a descending order with respect to the degree

    Multistable jittering in oscillators with pulsatile delayed feedback

    Get PDF
    Oscillatory systems with time-delayed pulsatile feedback appear in various applied and theoretical research areas, and received a growing interest in recent years. For such systems, we report a remarkable scenario of destabilization of a periodic regular spiking regime. At the bifurcation point numerous regimes with non-equal interspike intervals emerge. We show that the number of the emerging, so-called jittering regimes grows exponentially with the delay value. Although this appears as highly degenerate from a dynamical systems viewpoint, the multi-jitter bifurcation occurs robustly in a large class of systems. We observe it not only in a paradigmatic phase-reduced model, but also in a simulated Hodgkin-Huxley neuron model and in an experiment with an electronic circuit

    Embedding the dynamics of a single delay system into a feed-forward ring

    No full text
    We investigate the relation between the dynamics of a single oscillator with delayed self-feedback and a feed-forward ring of such oscillators, where each unit is coupled to its next neighbor in the same way as in the self-feedback case. We show that periodic solutions of the delayed oscillator give rise to families of rotating waves with different wave numbers in the corresponding ring. In particular, if for the single oscillator the periodic solution is resonant to the delay, it can be embedded into a ring with instantaneous couplings. We discover several cases where the stability of a periodic solution for the single unit can be related to the stability of the corresponding rotating wave in the ring. As a specific example, we demonstrate how the complex bifurcation scenario of simultaneously emerging multijittering solutions can be transferred from a single oscillator with delayed pulse feedback to multijittering rotating waves in a sufficiently large ring of oscillators with instantaneous pulse coupling. Finally, we present an experimental realization of this dynamical phenomenon in a system of coupled electronic circuits of FitzHugh-Nagumo type
    corecore